От мысленных экспериментов — к квантовому компьютеру

Ричард Фейнман предложил идею квантовых компьютеров не так давно, всего 40 лет назад, и она тогда казалась совершенно поразительной, хотя на столах у многих уже стояли персональные компьютеры. Но вот воплотить в жизнь смелые идеи Фейнмана и Юрия Манина оказалось куда сложнее, чем думали. Больше двух десятилетий ученые и инженеры по всему миру потратили, исследуя различные варианты воплощения квантовых битов «в железе».

0

Если первая квантовая революция начала ХХ века была, по сути, революцией человеческих представлений об устройстве микромира, то стоящая сейчас на пороге вторая квантовая революция — результат синтеза квантовых парадоксов и высоких технологий. Синтез этот, кстати сказать, произошел относительно недавно, каких-нибудь 20-30 лет назад. Правда, первые мысленные эксперименты, демонстрирующие во всей красе парадоксальность квантового мира (то, что действующие в нем законы неприменимы к привычному нам миру «больших» вещей), зародились в результате жарких споров между отцами-основателями квантовой механики еще в 1930-х. Интересно, что споры эти касались не математического аппарата квантовой механики, который к тому времени был практически закончен, а ее попыток истолковать странные законы микромира на привычном нам языке объектов макромира.

Действительно, потребность в интерпретации квантовой механики встает только при ее контакте с окружающим нас макромиром. Иными словами, проблема возникает, когда квантовые объекты начинают взаимодействовать с классическими (например, измерительной аппаратурой в лаборатории), что приводит к коллапсу квантовой волновой функции в одно из возможных классических состояний. Эта так называемая проблема измерения разделила физиков, уже совершивших переход в лоно квантовой теории, на два лагеря.

Первый из них возглавлял Нильс Бор, разработавший с коллегами по Институту теоретической физики в Копенгагене «копенгагенскую» интерпретацию квантовой механики. Центральным положением этой теории было изначально вероятностное описание событий в микромире: что свойства любой квантовой системы неопределенные до того момента, как мы их измерим (то есть пронаблюдаем). При этом до момента измерения квантовая система находится в некой «суперпозиции» всех возможных состояний, а при каждом новом измерении мы можем получать совсем разные значения этих свойств — в зависимости от вероятностей их распределения. Например, электрон в атоме может находиться в суперпозиции двух энергетических состояний и при измерении половину времени испускать фотон с чуть большей энергией, а половину — с чуть меньшей (подробнее о состояниях суперпозиции поговорим ниже).

Противоположную сторону занимал Альберт Эйнштейн, вместе с Эрвином Шрёдингером возглавлявший лагерь физиков, недовольных вероятностным подходом «копенгагенской интерпретации». Эйнштейн с коллегами выражали свой протест, придумывая различные каверзные примеры, демонстрирующие неполноту квантовой механики. Например, известен вопрос Эйнштейна к Бору: «А существует ли Луна, когда на нее никто не смотрит?». И хотя Луна — вполне себе классический объект, не подчиняющийся вероятностным законам квантовой механики, определенная логика в претензиях ученого все-таки была.

А существует ли Луна, когда на нее никто не смотрит?

Продолжив гнуть свою линию в переписке со Шрёдингером, Эйнштейн невольно подтолкнул того к созданию знаменитого мысленного эксперимента с котом. Тот самый злополучный «кот Шрёдингера» был призван показать абсурдность возможности макроскопического объекта — кота — существовать в квантовой суперпозиции состояний («кот жив» и «кот мертв») до тех пор, пока коробка с ним не открыта. Более того, в предложенном им эксперименте Шрёдингер не просто произвольно перенес законы микромира на вполне себе макроскопически-классического кота, но связал того с квантовым объектом — радиоактивным атомом, случайный распад которого и определяет исход эксперимента. В современной терминологии такое состояние называется «связанным» или «запутанным» (entangled).

Иллюстрация: Jie Qi (CC BY)
Иллюстрация: Jie Qi (CC BY)

Казалось бы, какое отношение все эти интерпретации и мысленные эксперименты имеют ко второй квантовой революции? На самом деле, они заложили невероятно мощную теоретическую базу для экспериментов, которые физики смогли воплотить в жизнь лишь полвека спустя благодаря развитию микроэлектроники, информационных технологий и научно-инструментальной базы. Именно этот прогресс позволил проводить манипуляции отдельными квантовыми объектами. Иными словами, к концу 1980-х формирующаяся область нанотехнологий подготовила научный мир к воплощению в жизнь самых смелых квантовых экспериментов, о которых когда-то мечтали Бор, Эйнштейн и Шрёдингер.

Как представить себе квантовое состояние?

Отвлечемся на минуту от течения нашего сюжета и попробуем наглядно представить себе суперпозицию состояний одного кубита: это можно представить в виде сферы, названной в честь нобелевского лауреата Феликса Блоха. На вертикальной оси, проходящей через центр сферы, находятся базисные состояния кубита — вполне себе классические значения 0 и 1, которые получаются при его измерении. Само квантовое состояние суперпозиции задается вектором, проведенным из центра сферы до любой точки на ее поверхности.

Чем ближе к вертикали расположена точка, тем ближе квантовое состояние к одному из классических, а чем ближе к экватору — тем более случайным будет результат его измерения. Фактически измерение квантового состояния кубита заключается в проекции вектора состояния на вертикальную ось или, что эквивалентно, к определению коэффициентов, с которыми базисные состояния входят в суперпозицию . Из-за вероятностного характера квантовой механики такие измерения нужно проводить множество раз, чтобы получить статистически верный результат. Более того, в реальных экспериментах из-за влияния различных шумов обычно получают не единичный, а укороченный вектор, указывающий на одну из точек внутри сферы Блоха, но не дотягивающийся до ее поверхности.

Представление квантового состояния со спином 1/2 через сферу Римана. Иллюстрация: Jean-Christophe BENOIST (CC BY-SA)
Представление квантового состояния со спином 1/2 через сферу Римана. Иллюстрация: Jean-Christophe BENOIST (CC BY-SA)

Увы, представить наглядно квантовое состояние для систем из нескольких кубитов гораздо сложнее. Конечно, если они не взаимодействуют между собой, каждый можно представить в виде сферы Блоха, но общее состояние суперпозиции запутанных кубитов так представить не удастся. Для этого прибегают к так называемой матрице плотности, визуализировать коэффициенты которой не составляет большого труда. Процесс измерения этих коэффициентов называется «квантовой томографией» — реконструкцией неизвестного квантового состояния с помощью серии повторных измерений — и служит финальным этапом выполнения любого квантового алгоритма.

Пророческий дар Фейнмана

Вернемся в середину XX века. Заметную роль в зарождении нанотехнологий как самостоятельной области науки сыграл знаменитый физик, нобелевский лауреат и известный популяризатор науки Ричард Фейнман. В конце 1959 года, на встрече Американского физического общества, он прочитал ставшую культовой лекцию «Внизу много места: приглашение войти в новую область физики» («There’s Plenty of Room at the Bottom: An Invitation to Enter a New Field of Physics»). В ней Фейнман обсуждал возможность манипулирования материей вплоть до уровня отдельных атомов, а также создания новых типов микроскопов для исследования наномира, автономных молекулярных машин и крошечных хирургических роботов.

Несмотря на совершенно фантастический (для середины XX века) характер речи Фейнмана, многие его идеи были воплощены в последующие десятилетия. Термин «нанотехнологии» официально вошел в научную терминологию в 1974 году с подачи японца Норио Танигути и был подхвачен американским ученым Эриком Дрекслером, которого часто называют «отцом нанотехнологий». Дело в том, что в 1986-м Дрекслер написал знаменитую книгу «Машины созидания: грядущая эра нанотехнологии» («Engines of Creation: The Coming Era of Nanotechnology»), вызвавшую общественный резонанс и повлиявшую в дальнейшем на создание американской национальной программы по нанотехнологиям. Именно в 1980-х изобрели новые типы микроскопов для исследования и визуализации объектов на наномасштабе: сканирующий туннельный микроскоп (СТМ) и атомно-силовой микроскоп (АСМ). Чуть позже эти инструменты стали использовать не только для наблюдения, но и манипуляции отдельными нанообъектами, вплоть до единичных атомов.

Раскрашенная версия изображения, созданного сканирующим туннельным микроскопом NIST в момент перемещения атома кобальта через плотно упакованную решетку атомов меди. Иллюстрация: Joseph Stroscio; Robert Celotta / NIST

Вам также могут понравиться Еще от автора

Оставьте ответ

Ваш электронный адрес не будет опубликован.