Самолеты стратегического привета

Два стратегических самолета, белый и серый. Они возникли в противоположных полушариях Земли – из одной задачи и разных ключевых решений. Серый шарит у земли, белый мчится стратосферой. Разной кистью, разной мерой их создали как могли. Naked Science внимательно смотрит на российский Ту-160 и американский В-2 «Spirit».

1

У стратегической авиации есть свои козыри. Это возможность оперативно, с авиационной скоростью, нанести удар на любую глубину вражеской территории. Это колоссальная, стратегическая мощность удара, радикально меняющего военную ситуацию (а то и ход истории). Это многоразовость боевого применения, использование одного и того же боевого средства для разных атак. И это возможность отменить и прекратить удар до того, как он сделан, в любой момент после взлета. Вернуть меч из замаха обратно в ножны. Такой потенциал можно реализовывать на базе разных подходов и выбора ключевых свойств самолетов. Увидеть, как работают два разных подхода, можно на примере двух самых современных стратегических бомбардировщиков, стоящих на вооружении, – российского Ту-160 и американского В-2 «Spirit».

Стратегический бомбардировщик Ту-160 / Фото: avi-ator.ru
Стратегический бомбардировщик Ту-160 / Фото: avi-ator.ru
Стратегический бомбардировщик B-2 «Spirit» / Фото: alphacoders.com
Стратегический бомбардировщик B-2 «Spirit» / Фото: alphacoders.com

Разные стратегии стратегов

У обоих самолетов, как стратегических бомбардировщиков, общая главная задача: надежно доставить мощный боевой груз на большую дальность. Надежность доставки сводится к ключевому затруднению — перехвату самолета. И здесь ставку можно сделать на разные факторы. Можно, например, выбрать примат быстроты. Попробуй-ка успешно перехватить самолет, мчащийся с большой сверхзвуковой скоростью порядка 2200 км/ч, или с числом Маха, равным 2,07. Это осуществимо — но очень непросто, сразу по двум причинам: во-первых, сокращается полетное время до цели (при этом ускоряется выполнение боевой задачи), и уменьшается доступное время приближения к самолету перехватывающего средства, ракеты или истребителя. Но если вы выбрали путь сверхзвуковой быстроты, то этот путь будет пролегать на большой высоте.

Режим полета разводит самолеты в разные части атмосферы и меняет их аэродинамический облик до разительных различий

Но можно выбрать другой затрудняющий перехват фактор — трудность обнаружения. При таком подходе скорость полета не является главным фактором, важнее решить, как и где спрятать самолет. Как? Набором чисто конструктивных мер. Где? Убрав со всеобщего обозрения, спрятав у земли, в областях плохой видимости для средств обнаружения.

Орел и сова

Пара разных стратегических решений, воплотившаяся в этих самолетах, имеет весьма четкий аналог в живом мире. Авиация повторяет птиц, птицы иллюстрируют авиацию. Вот орел — эффективный хищник, настоящая машина убийства. Он крупный, он весомый, он парит высоко в небе, высматривая добычу, и за счет стремительности снижения настигает и поражает ее. Его крылья мощны, тело оформлено скоростью. А вот сова — не менее эффективный хищник, тоже настоящая машина убийства. Но — совсем другая. Будучи средних размеров, неслышно мчится она низко у земли, высматривая добычу, и благодаря своей бесшумности настигает и поражает ее. Ее крылья широки, тело оформлено беззвучностью.

У каждого крылатого хищника своя стратегия, и с ее помощью они вполне решают свои задачи и достигают целей. Потому что существуют не только оба конкретных биологических вида, но оба рода и семейства, использующие выбранный принцип и стратегию, пусть и с вариациями. Аналогичная ситуация — у стратегических самолетов. Каждый хорош, каждый может осуществить удар в рамках своей стратегии. Интересно, как это реализуется в практическом воплощении — давайте посмотрим.

Стратосферные путники

Атмосфера, в которой летят самолеты, делится на две непохожие части, две разные «среды обитания». Нижняя часть атмосферы называется тропосферой. Она копит в себе энергию и буйство солнечного тепла, с помощью которого происходят практически все погодные явления. Тропосферу характеризуют динамика и турбулентность, она насыщена разнообразными вертикальными движениями среды и облаками всех видов. На высоте 10-12 километров тропосфера отделяется довольно ощутимой границей от другого пространства, находящегося выше, – стратосферы.

Стратосфера устроена иначе: уложена ровными слоями, не перемешивающимися динамически. Поэтому и называется стратосферой, от латинского stratum – «слой». В ней практически нет вертикальных движений, поэтому полет в ней обычно спокойный, без тряски, а низкая плотность воздуха позволяет развивать высокую скорость. Спокойствие стратосферы экономит топливо на парирование различных возмущений, ведь крылья, стабилизаторы и кили создают свою силу в отклоненном положении, а это всегда добавочное сопротивление воздуха. Для небольших дальностей это не так существенно, но на стратегических дальностях мелочей не бывает.

Кроме того, отсутствие турбулентности снижает нагрузку на самолет и уменьшает накопление усталости металла, продляя эксплуатационный ресурс. Поэтому стратосфера для стратегических самолетов – основа большой (и многократной) дальности. Однако используют они эту основу по-разному. Оба наших героя пользуются стратосферой как эшелоном для покрытия стратегического расстояния, как спокойной и быстрой автотрассой, по которой можно мчаться, пока не приблизился к воздушному пространству противника. И тут начинают проявляться отличия. Ту-160 может и дальше пойти со сверхзвуковой быстротой, а В-2 снизится и будет красться максимально близко к рельефу, стараясь совершенно слиться с местностью.

Максимальная высота полета обоих самолетов примерно одинаковая: 15 200 метров у В-2 и 16 000 метров – у Ту-160. Почему именно столько? Дело в том, что стратосфера начинается на разной высоте в разных широтах Земли. На полюсах нижняя граница стратосферы лежит на высоте восьми-девяти километров. На экваторе накачиваемая экваториальными лучами Солнца тропосфера бурлит сильнее, разгоняя восходящие потоки на большую высоту, и выталкивает стратосферу выше, к высотам 15-17 километров. Высота максимального полета В-2 и соответствует способности лететь в стратосфере на любых широтах, оставаясь в ее спокойных слоях и экономя топливо на минимизации управляющих усилий.

Сверхзвуковой полет Ту-160

Сопротивление сверхзвукового полета сильное за счет создания сверхзвуковых ударных волн, или конусов Маха. Они порождаются скоростью и кинетической энергией самолета, забирая ее у корпуса и распространяя волновым путем от самолета в окружающее пространство. Можно снизить передачу энергии ударным волнам, заострив все части конструкции, встречающие сверхзвуковой поток. Так у самолетов возникают — острый нос, заостренные передние кромки тонких крыльев, киля и стабилизаторов, острые кромки воздухозаборников.

Сверхзвуковое сопротивление снижается скошенными крыльями, плоскости которых отводятся назад во время сверхзвукового режима полета, реализуя изменяемую геометрию крыла. А еще большим скосом лобовой части кабины. А еще — очисткой корпуса от аэродинамических деталей. Ничто не должно мешать сверхзвуковому потоку воздуха плавно обтекать корпус. Все оружие для снижения сопротивления воздуха убрано внутрь корпуса, не оставляя никаких пилонов и балочных держателей, делая поверхность самолета гладкой. Большие сверхзвуковые воздухозаборники расположились попарно снизу корпуса, чтобы собирать с низа фюзеляжа натекший газодинамически сжатый углом атаки воздух. Их вертикальный передний клин и скос кромки воздухозаборников за ним с наглядностью учебника демонстрируют принцип работы сверхзвукового воздухозаборника. Так образуется сверхзвуковой аэродинамический облик. Можно сказать, что его определила аэродинамика, став главным скульптором самолета, создателем формы.

Ту-160 в полете / Фото: avi-ator.ru
Ту-160 в полете / Фото: avi-ator.ru

Но сверхзвук ставит задачи не только приведения формы в соответствие. Сопротивление воздуха все равно существенно возрастает при всех принятых мерах. И поэтому требуется столь же существенное возрастание тяги, чтобы держать скорость. Приращение тяги создают форсажным режимом двигателя. Для этого в задней части двигателя, перед реактивным соплом, вставляется большая пустая труба с топливными форсунками в начале – форсажная камера сгорания. Она просто сжигает добавочное топливо, обильно распыляемое в горячий поток – отработанный за турбиной газ, смешанный с воздухом наружного контура, прошедшего мимо камер сгорания двигателя и сохранившего свой кислород.

Эта могучая керосиновая горелка поднимает температуру газа перед соплом на тысячу градусов. Реактивное сопло, тепловая машина по разгону газовой струи, превращает добавленную газу тепловую энергию в увеличение скорости истечения и прирост реактивной силы. У двигателей НК-32, четверка которых стоит на Ту-160, тяга вырастает с максимальных 14 тонн до форсажных 25 тонн. Прирост тяги значительный, на 11 тонн, чуть ли не вдвое. Эта добавка тяги компенсирует возросшее сверхзвуковое сопротивление, поддерживая достаточно высокую (с числом Маха больше двух единиц) сверхзвуковую скорость.

Мощное увеличение форсажной тяги еще больше повышает расход топлива, возрастающий на форсаже в разы. У НК-32 он увеличивается вчетверо, сжигая за час уже 42 тонны. А все четыре двигателя на полном форсаже расходуют 168 тонн – всю емкость баков. И хотя есть режим частичного форсажа, все равно форсаж требует запасов топлива. Большая масса топлива делает самолет большим. Так Ту-160 стал самым тяжелым боевым самолетом в истории, с максимальной взлетной массой 275 тонн. Из которых 148 тонн – топливо, а это больше половины. Общая же емкость топливных баков составляет 171 тонну. Зачем в баках место для 23 тонн керосина сверх максимальной взлетной заправки? Потому что дозаправкой в воздухе можно заправить и их тоже, в отсутствие взлетной нагрузки на шасси. Возможность сверхзвука и форсажный режим делают Ту-160 огромным боевым топливовозом.

При таких размерах его можно нагрузить и соответствующим грузом. Стандартная боевая нагрузка Ту-160 составляет 22,5 тонны, а максимальная – 40 тонн. Понятно, что на стратегические дальности он летит со стандартной нагрузкой, с которой его боевой радиус достигает 7300 километров, часть которых он может пройти на сверхзвуке. Все это делает Ту-160 самым большим и мощным боевым самолетом в мире. В межконтинентальных ракетах ему бы соответствовала 15А18М «Сатана» – самая большая и тяжелая баллистическая ракета в мире.

Тихий полет В-2 «Spirit»

Тихий полет В-2 «Spirit» подчинен совсем иным ценностям, и самолет построен в других координатах. Малозаметность – главный скульптор «Духа». А аэродинамика лишь старалась подстроиться под странные и жесткие требования по радиоотражению. Киль убрали, чтобы не создавать отражающего уголка с корпусом и стабилизаторами, превратив самолет в одну большую плоскую фигуру, очертания которой тоже определены задачей минимального радиоотражения. Все кромки параллельны только двум прямым, что снижает вероятность обнаружения радиоимпульсом радара. Все аэродинамически существенное переползло на верхнюю сторону, подобно глазам камбалы, оставив нижнюю сторону ровной и гладкой поверхностью без деталей. Но сделано это не ради снижения сопротивления воздуха, как у Ту-160, а ради уменьшения обратного сигнала от летящего на высоте самолета, который полностью отражает пришедший сигнал дальше, в сторону от радара. Воздухозаборники стали растянутыми и невысокими, прижавшись к крылу.

В-2 Spirit в полете / Фото: 24smi.org
В-2 Spirit в полете / Фото: 24smi.org

Сопла тоже сплющились, став щелевыми и выйдя на верхнюю поверхность крыла. Они отодвинулись от задней кромки крыла, вглубь верхней поверхности самолета, скрыв свои отражающие внутренности от радиолуча снизу. Одновременно это позволило реактивным струям с их большой плоской поверхностью быстрее смешиваться с окружающим воздухом, с охлаждением выходя за крыло. Это уменьшило тепловое излучение горячей реактивной струи, снизив заметность аппарата для тепловых головок самонаведения ракет. Щелевые сопла, скрывающие нагретые части двигателя, тоже в разы понизили традиционную инфракрасную светимость и обозримость обычных круглых сопел, яркими фонарями светящих в пространство большими раскаленными поверхностями. Специальные радиопоглощающие покрытия всего корпуса дополнили комплекс основных мер по снижению заметности.

В рамках малозаметности светить сверхзвуковой мощностью — не резон. Скорость самолета дозвуковая, при этом она остается вполне «авиационной» с точки зрения быстроты доставки груза к цели. Дозвуковой режим обтекания не создает ударно-волновой перекачки энергии от самолета в пространство, лобовое сопротивление не достигает уровней сверхзвукового. Поэтому не требуется большой форсажной тяги двигателей: четыре двигателя General Electric F118-GE-100 — бесфорсажные. Соответственно, на боевом участке не возникает высокого расхода топлива, что продлевает боевую часть полета. Керосина можно везти значительно меньше, а двигатели поставить не такие мощные, избыток иррационален.

Тяга двигателей В-2 на максимальном режиме составляет 7,7 тонны и равна половине 14 тонн максимальной тяги двигателей Ту-160. Это снизило массу и двигателей, и конструкции, что еще больше уменьшило расход топлива и его необходимый запас. Цепочка таких последовательных сокращений привела к уменьшению максимальной взлетной заправки В-2 вдвое к Ту-160, порядка 73 тонн. Самолет стал на треть легче Ту-160, с максимальной взлетной массой 180 тонн. Это сократило и его боевой радиус в 5500 километров – но он уменьшился на четверть. При этом боевой груз В-2 берет во вполне стратегическом весе: стандартная бомбовая нагрузка – 18 тонн, меньше уже лишь на одну пятую стандартной нагрузки Ту-160, и максимальная – до 27 тонн.

Расширение возможностей

Получившиеся у этих самолетов тактико-технические данные так и тянет подвергнуть прямым сравнениям. Меньше дальность и боевой радиус, значит — ниже боевые способности стратегического самолета, его ударный потенциал; такой же подход – к тоннажу боевой нагрузки. И это действительно так, если брать только сам самолет, один летный экземпляр. Но самолет включен в комплекс мер по повышению его боевых возможностей. Ими можно решать задачи принципиально большей, неограниченной дальности, радикально меняя расклад.

Например, создав сеть авиабаз по всему миру, можно обеспечить c них дозаправку в воздухе столько раз, сколько нужно, увеличив дальность полета многократно. В такой ситуации погоня за ростом автономной дальности самолета может терять смысл. Оптимальность возимых на борту запасов топлива смещается в сторону их сокращения. Зачем возить лишнее, если везде можно долить керосина? Его подвезут в любом районе планеты. В январе 2017 года два B-2 уничтожили лагерь боевиков возле города Сирт в Ливии. При этом взлет и посадка производились в одном месте, на своей базе ВВС Уайтмен в штате Миссури, при нескольких дозаправках за 34-часовой беспосадочный боевой вылет. Если говорить в терминах боевого радиуса (взлетел – дотянулся – вернулся), он составил больше десяти тысяч километров.

Дозаправка В-2 в воздухе / Фото: theaviationist.com
Дозаправка В-2 в воздухе / Фото: theaviationist.com

Подобным образом В-2 взлетали с базы Уайтмен во время боевых вылетов в Афганистан, откуда без посадки возвращались на свою базу в Миссури – то есть летали в противоположную часть Земли и возвращались оттуда, не совершая посадок. Полет занимал почти двое суток, 44 часа, при дальности до цели около 13 000 километров. Это ортодромная дальность, то есть дальность по ортодромии — кратчайшей прямой на поверхности Земли. Дальность же пройденного маршрута была значительно больше 26 000 километров из-за выхода в точки дозаправки, следования выделенным проходам на территориях других государств, обхода атмосферных фронтов и грозовых массивов и других изменений курса.

Насколько при такой организации нанесения ударов стоит увеличивать боевой радиус самолета и бороться за еще две или три тысячи километров? Это не обеспечит действия на другой стороне планеты с возвращением оттуда. Ограничен ли В-2 при организованной таким образом реальной эксплуатации боевым радиусом в 5300 километров?

Вам также могут понравиться Еще от автора

Оставьте ответ

Ваш электронный адрес не будет опубликован.